Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain.

نویسندگان

  • Yasunori Murakami
  • Massimo Pasqualetti
  • Yoko Takio
  • Shigeki Hirano
  • Filippo M Rijli
  • Shigeru Kuratani
چکیده

During development, the vertebrate hindbrain is subdivided along its anteroposterior axis into a series of segmental bulges called rhombomeres. These segments in turn generate a repeated pattern of rhombomere-specific neurons, including reticular and branchiomotor neurons. In amphioxus (Cephalochordata), the sister group of the vertebrates, a bona fide segmented hindbrain is lacking, although the embryonic brain vesicle shows molecular anteroposterior regionalization. Therefore, evaluation of the segmental patterning of the central nervous system of agnathan embryos is relevant to our understanding of the origin of the developmental plan of the vertebrate hindbrain. To investigate the neuronal organization of the hindbrain of the Japanese lamprey, Lethenteron japonicum, we retrogradely labeled the reticulospinal and branchial motoneurons. By combining this analysis with a study of the expression patterns of genes identifying specific rhombomeric territories such as LjKrox20, LjPax6, LjEphC and LjHox3, we found that the reticular neurons in the lamprey hindbrain, including isthmic, bulbar and Mauthner cells, develop in conserved rhombomere-specific positions, similar to those in the zebrafish. By contrast, lamprey trigeminal and facial motor nuclei are not in register with rhombomere boundaries, unlike those of gnathostomes. The trigeminal-facial boundary corresponds to the rostral border of LjHox3 expression in the middle of rhombomere 4. Exogenous application of retinoic acid (RA) induced a rostral shift of both the LjHox3 expression domain and branchiomotor nuclei with no obvious repatterning of rhombomeric segmentation and reticular neurons. Therefore, whereas subtype variations of motoneuron identity along the anteroposterior axis may rely on Hox-dependent positional values, as in gnathostomes, such variations in the lamprey are not constrained by hindbrain segmentation. We hypothesize that the registering of hindbrain segmentation and neuronal patterning may have been acquired through successive and independent stepwise patterning changes during evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of branchiomotor neurons in zebrafish.

The mechanisms underlying neuronal specification and axonogenesis in the vertebrate hindbrain are poorly understood. To address these questions, we have employed anatomical methods and mutational analysis to characterize the branchiomotor neurons in the zebrafish embryo. The zebrafish branchiomotor system is similar to those in the chick and mouse, except for the location of the nVII and nIX br...

متن کامل

Laser Ablations Reveal Functional Relationships of Segmental Hindbrain Neurons in Zebrafish

Segmentation of the vertebrate brain is most obvious in the hindbrain, where successive segments contain repeated neuronal types. One such set of three repeated reticulospinal neurons--the Mauthner cell, MiD2cm, and MiD3cm--is thought to produce different forms of the escape response that fish use to avoid predators. We used laser ablations in larval zebrafish to test the hypothesis that these ...

متن کامل

Defining the excitatory neurons that drive the locomotor rhythm in a simple vertebrate: insights into the origin of reticulospinal control

Important questions remain about the origin of the excitation that drives locomotion in vertebrates and the roles played by reticulospinal neurons. In young Xenopus tadpoles, paired whole-cell recordings reveal reticulospinal neurons that directly excite swimming circuit neurons in the brainstem and spinal cord. They form part of a column of neurons (dINs) with ipsilateral descending projection...

متن کامل

Beyond the neckless phenotype: influence of reduced retinoic acid signaling on motor neuron development in the zebrafish hindbrain.

Retinoic acid (RA) has been identified as a key signal involved in the posteriorization of vertebrate neural ectoderm. The main biosynthetic enzyme responsible for RA signaling in the hindbrain and spinal cord is Raldh2. However, neckless/raldh2-mutant (nls) zebrafish exhibit only mild degrees of anteriorization in the neural ectoderm, compared to full vitamin A deficiency in amniotes and the R...

متن کامل

Compartments in the lamprey embryonic brain as revealed by regulatory gene expression and the distribution of reticulospinal neurons.

The vertebrate neural tube consists of a series of neuromeres along its anteroposterior axis. Between amphioxus that possesses no neuromeres and gnathostomes, the lamprey occupies a critical position in the phylogeny for the origin of the segmented brain. To clarify the rhombomeric configuration of the Japanese lamprey, Lampetra japonica, we injected rhodamine- and fluorescein-labeled dextrans ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 131 5  شماره 

صفحات  -

تاریخ انتشار 2004